Skip to content

pydantic_ai.Agent

Bases: Generic[AgentDeps, ResultData]

Class for defining "agents" - a way to have a specific type of "conversation" with an LLM.

Agents are generic in the dependency type they take AgentDeps and the result data type they return, ResultData.

By default, if neither generic parameter is customised, agents have type Agent[None, str].

Minimal usage example:

from pydantic_ai import Agent

agent = Agent('openai:gpt-4o')
result = agent.run_sync('What is the capital of France?')
print(result.data)
#> Paris
Source code in pydantic_ai_slim/pydantic_ai/agent.py
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
@final
@dataclass(init=False)
class Agent(Generic[AgentDeps, ResultData]):
    """Class for defining "agents" - a way to have a specific type of "conversation" with an LLM.

    Agents are generic in the dependency type they take [`AgentDeps`][pydantic_ai.tools.AgentDeps]
    and the result data type they return, [`ResultData`][pydantic_ai.result.ResultData].

    By default, if neither generic parameter is customised, agents have type `Agent[None, str]`.

    Minimal usage example:

    ```python
    from pydantic_ai import Agent

    agent = Agent('openai:gpt-4o')
    result = agent.run_sync('What is the capital of France?')
    print(result.data)
    #> Paris
    ```
    """

    # we use dataclass fields in order to conveniently know what attributes are available
    model: models.Model | models.KnownModelName | None
    """The default model configured for this agent."""

    name: str | None
    """The name of the agent, used for logging.

    If `None`, we try to infer the agent name from the call frame when the agent is first run.
    """
    end_strategy: EndStrategy
    """Strategy for handling tool calls when a final result is found."""

    last_run_messages: list[_messages.Message] | None = None
    """The messages from the last run, useful when a run raised an exception.

    Note: these are not used by the agent, e.g. in future runs, they are just stored for developers' convenience.
    """

    _result_schema: _result.ResultSchema[ResultData] | None = field(repr=False)
    _result_validators: list[_result.ResultValidator[AgentDeps, ResultData]] = field(repr=False)
    _allow_text_result: bool = field(repr=False)
    _system_prompts: tuple[str, ...] = field(repr=False)
    _function_tools: dict[str, Tool[AgentDeps]] = field(repr=False)
    _default_retries: int = field(repr=False)
    _system_prompt_functions: list[_system_prompt.SystemPromptRunner[AgentDeps]] = field(repr=False)
    _deps_type: type[AgentDeps] = field(repr=False)
    _max_result_retries: int = field(repr=False)
    _current_result_retry: int = field(repr=False)
    _override_deps: _utils.Option[AgentDeps] = field(default=None, repr=False)
    _override_model: _utils.Option[models.Model] = field(default=None, repr=False)

    def __init__(
        self,
        model: models.Model | models.KnownModelName | None = None,
        *,
        result_type: type[ResultData] = str,
        system_prompt: str | Sequence[str] = (),
        deps_type: type[AgentDeps] = NoneType,
        name: str | None = None,
        retries: int = 1,
        result_tool_name: str = 'final_result',
        result_tool_description: str | None = None,
        result_retries: int | None = None,
        tools: Sequence[Tool[AgentDeps] | ToolFuncEither[AgentDeps, ...]] = (),
        defer_model_check: bool = False,
        end_strategy: EndStrategy = 'early',
    ):
        """Create an agent.

        Args:
            model: The default model to use for this agent, if not provide,
                you must provide the model when calling it.
            result_type: The type of the result data, used to validate the result data, defaults to `str`.
            system_prompt: Static system prompts to use for this agent, you can also register system
                prompts via a function with [`system_prompt`][pydantic_ai.Agent.system_prompt].
            deps_type: The type used for dependency injection, this parameter exists solely to allow you to fully
                parameterize the agent, and therefore get the best out of static type checking.
                If you're not using deps, but want type checking to pass, you can set `deps=None` to satisfy Pyright
                or add a type hint `: Agent[None, <return type>]`.
            name: The name of the agent, used for logging. If `None`, we try to infer the agent name from the call frame
                when the agent is first run.
            retries: The default number of retries to allow before raising an error.
            result_tool_name: The name of the tool to use for the final result.
            result_tool_description: The description of the final result tool.
            result_retries: The maximum number of retries to allow for result validation, defaults to `retries`.
            tools: Tools to register with the agent, you can also register tools via the decorators
                [`@agent.tool`][pydantic_ai.Agent.tool] and [`@agent.tool_plain`][pydantic_ai.Agent.tool_plain].
            defer_model_check: by default, if you provide a [named][pydantic_ai.models.KnownModelName] model,
                it's evaluated to create a [`Model`][pydantic_ai.models.Model] instance immediately,
                which checks for the necessary environment variables. Set this to `false`
                to defer the evaluation until the first run. Useful if you want to
                [override the model][pydantic_ai.Agent.override] for testing.
            end_strategy: Strategy for handling tool calls that are requested alongside a final result.
                See [`EndStrategy`][pydantic_ai.agent.EndStrategy] for more information.
        """
        if model is None or defer_model_check:
            self.model = model
        else:
            self.model = models.infer_model(model)

        self.end_strategy = end_strategy
        self.name = name
        self._result_schema = _result.ResultSchema[result_type].build(
            result_type, result_tool_name, result_tool_description
        )
        # if the result tool is None, or its schema allows `str`, we allow plain text results
        self._allow_text_result = self._result_schema is None or self._result_schema.allow_text_result

        self._system_prompts = (system_prompt,) if isinstance(system_prompt, str) else tuple(system_prompt)
        self._function_tools = {}
        self._default_retries = retries
        for tool in tools:
            if isinstance(tool, Tool):
                self._register_tool(tool)
            else:
                self._register_tool(Tool(tool))
        self._deps_type = deps_type
        self._system_prompt_functions = []
        self._max_result_retries = result_retries if result_retries is not None else retries
        self._current_result_retry = 0
        self._result_validators = []

    async def run(
        self,
        user_prompt: str,
        *,
        message_history: list[_messages.Message] | None = None,
        model: models.Model | models.KnownModelName | None = None,
        deps: AgentDeps = None,
        infer_name: bool = True,
    ) -> result.RunResult[ResultData]:
        """Run the agent with a user prompt in async mode.

        Example:
        ```python
        from pydantic_ai import Agent

        agent = Agent('openai:gpt-4o')

        result_sync = agent.run_sync('What is the capital of Italy?')
        print(result_sync.data)
        #> Rome
        ```

        Args:
            user_prompt: User input to start/continue the conversation.
            message_history: History of the conversation so far.
            model: Optional model to use for this run, required if `model` was not set when creating the agent.
            deps: Optional dependencies to use for this run.
            infer_name: Whether to try to infer the agent name from the call frame if it's not set.

        Returns:
            The result of the run.
        """
        if infer_name and self.name is None:
            self._infer_name(inspect.currentframe())
        model_used, mode_selection = await self._get_model(model)

        deps = self._get_deps(deps)

        with _logfire.span(
            '{agent_name} run {prompt=}',
            prompt=user_prompt,
            agent=self,
            mode_selection=mode_selection,
            model_name=model_used.name(),
            agent_name=self.name or 'agent',
        ) as run_span:
            new_message_index, messages = await self._prepare_messages(deps, user_prompt, message_history)
            self.last_run_messages = messages

            for tool in self._function_tools.values():
                tool.current_retry = 0

            cost = result.Cost()

            run_step = 0
            while True:
                run_step += 1
                with _logfire.span('preparing model and tools {run_step=}', run_step=run_step):
                    agent_model = await self._prepare_model(model_used, deps)

                with _logfire.span('model request', run_step=run_step) as model_req_span:
                    model_response, request_cost = await agent_model.request(messages)
                    model_req_span.set_attribute('response', model_response)
                    model_req_span.set_attribute('cost', request_cost)
                    model_req_span.message = f'model request -> {model_response.role}'

                messages.append(model_response)
                cost += request_cost

                with _logfire.span('handle model response', run_step=run_step) as handle_span:
                    final_result, response_messages = await self._handle_model_response(model_response, deps)

                    # Add all messages to the conversation
                    messages.extend(response_messages)

                    # Check if we got a final result
                    if final_result is not None:
                        result_data = final_result.data
                        run_span.set_attribute('all_messages', messages)
                        run_span.set_attribute('cost', cost)
                        handle_span.set_attribute('result', result_data)
                        handle_span.message = 'handle model response -> final result'
                        return result.RunResult(messages, new_message_index, result_data, cost)
                    else:
                        # continue the conversation
                        handle_span.set_attribute('tool_responses', response_messages)
                        response_msgs = ' '.join(r.role for r in response_messages)
                        handle_span.message = f'handle model response -> {response_msgs}'

    def run_sync(
        self,
        user_prompt: str,
        *,
        message_history: list[_messages.Message] | None = None,
        model: models.Model | models.KnownModelName | None = None,
        deps: AgentDeps = None,
        infer_name: bool = True,
    ) -> result.RunResult[ResultData]:
        """Run the agent with a user prompt synchronously.

        This is a convenience method that wraps `self.run` with `loop.run_until_complete()`.

        Example:
        ```python
        from pydantic_ai import Agent

        agent = Agent('openai:gpt-4o')

        async def main():
            result = await agent.run('What is the capital of France?')
            print(result.data)
            #> Paris
        ```

        Args:
            user_prompt: User input to start/continue the conversation.
            message_history: History of the conversation so far.
            model: Optional model to use for this run, required if `model` was not set when creating the agent.
            deps: Optional dependencies to use for this run.
            infer_name: Whether to try to infer the agent name from the call frame if it's not set.

        Returns:
            The result of the run.
        """
        if infer_name and self.name is None:
            self._infer_name(inspect.currentframe())
        loop = asyncio.get_event_loop()
        return loop.run_until_complete(
            self.run(user_prompt, message_history=message_history, model=model, deps=deps, infer_name=False)
        )

    @asynccontextmanager
    async def run_stream(
        self,
        user_prompt: str,
        *,
        message_history: list[_messages.Message] | None = None,
        model: models.Model | models.KnownModelName | None = None,
        deps: AgentDeps = None,
        infer_name: bool = True,
    ) -> AsyncIterator[result.StreamedRunResult[AgentDeps, ResultData]]:
        """Run the agent with a user prompt in async mode, returning a streamed response.

        Example:
        ```python
        from pydantic_ai import Agent

        agent = Agent('openai:gpt-4o')

        async def main():
            async with agent.run_stream('What is the capital of the UK?') as response:
                print(await response.get_data())
                #> London
        ```

        Args:
            user_prompt: User input to start/continue the conversation.
            message_history: History of the conversation so far.
            model: Optional model to use for this run, required if `model` was not set when creating the agent.
            deps: Optional dependencies to use for this run.
            infer_name: Whether to try to infer the agent name from the call frame if it's not set.

        Returns:
            The result of the run.
        """
        if infer_name and self.name is None:
            # f_back because `asynccontextmanager` adds one frame
            if frame := inspect.currentframe():  # pragma: no branch
                self._infer_name(frame.f_back)
        model_used, mode_selection = await self._get_model(model)

        deps = self._get_deps(deps)

        with _logfire.span(
            '{agent_name} run stream {prompt=}',
            prompt=user_prompt,
            agent=self,
            mode_selection=mode_selection,
            model_name=model_used.name(),
            agent_name=self.name or 'agent',
        ) as run_span:
            new_message_index, messages = await self._prepare_messages(deps, user_prompt, message_history)
            self.last_run_messages = messages

            for tool in self._function_tools.values():
                tool.current_retry = 0

            cost = result.Cost()

            run_step = 0
            while True:
                run_step += 1

                with _logfire.span('preparing model and tools {run_step=}', run_step=run_step):
                    agent_model = await self._prepare_model(model_used, deps)

                with _logfire.span('model request {run_step=}', run_step=run_step) as model_req_span:
                    async with agent_model.request_stream(messages) as model_response:
                        model_req_span.set_attribute('response_type', model_response.__class__.__name__)
                        # We want to end the "model request" span here, but we can't exit the context manager
                        # in the traditional way
                        model_req_span.__exit__(None, None, None)

                        with _logfire.span('handle model response') as handle_span:
                            final_result, response_messages = await self._handle_streamed_model_response(
                                model_response, deps
                            )

                            # Add all messages to the conversation
                            messages.extend(response_messages)

                            # Check if we got a final result
                            if final_result is not None:
                                result_stream = final_result.data
                                run_span.set_attribute('all_messages', messages)
                                handle_span.set_attribute('result_type', result_stream.__class__.__name__)
                                handle_span.message = 'handle model response -> final result'
                                yield result.StreamedRunResult(
                                    messages,
                                    new_message_index,
                                    cost,
                                    result_stream,
                                    self._result_schema,
                                    deps,
                                    self._result_validators,
                                    lambda m: run_span.set_attribute('all_messages', messages),
                                )
                                return
                            else:
                                # continue the conversation
                                handle_span.set_attribute('tool_responses', response_messages)
                                response_msgs = ' '.join(r.role for r in response_messages)
                                handle_span.message = f'handle model response -> {response_msgs}'
                                # the model_response should have been fully streamed by now, we can add it's cost
                                cost += model_response.cost()

    @contextmanager
    def override(
        self,
        *,
        deps: AgentDeps | _utils.Unset = _utils.UNSET,
        model: models.Model | models.KnownModelName | _utils.Unset = _utils.UNSET,
    ) -> Iterator[None]:
        """Context manager to temporarily override agent dependencies and model.

        This is particularly useful when testing.
        You can find an example of this [here](../testing-evals.md#overriding-model-via-pytest-fixtures).

        Args:
            deps: The dependencies to use instead of the dependencies passed to the agent run.
            model: The model to use instead of the model passed to the agent run.
        """
        if _utils.is_set(deps):
            override_deps_before = self._override_deps
            self._override_deps = _utils.Some(deps)
        else:
            override_deps_before = _utils.UNSET

        # noinspection PyTypeChecker
        if _utils.is_set(model):
            override_model_before = self._override_model
            # noinspection PyTypeChecker
            self._override_model = _utils.Some(models.infer_model(model))  # pyright: ignore[reportArgumentType]
        else:
            override_model_before = _utils.UNSET

        try:
            yield
        finally:
            if _utils.is_set(override_deps_before):
                self._override_deps = override_deps_before
            if _utils.is_set(override_model_before):
                self._override_model = override_model_before

    @overload
    def system_prompt(
        self, func: Callable[[RunContext[AgentDeps]], str], /
    ) -> Callable[[RunContext[AgentDeps]], str]: ...

    @overload
    def system_prompt(
        self, func: Callable[[RunContext[AgentDeps]], Awaitable[str]], /
    ) -> Callable[[RunContext[AgentDeps]], Awaitable[str]]: ...

    @overload
    def system_prompt(self, func: Callable[[], str], /) -> Callable[[], str]: ...

    @overload
    def system_prompt(self, func: Callable[[], Awaitable[str]], /) -> Callable[[], Awaitable[str]]: ...

    def system_prompt(
        self, func: _system_prompt.SystemPromptFunc[AgentDeps], /
    ) -> _system_prompt.SystemPromptFunc[AgentDeps]:
        """Decorator to register a system prompt function.

        Optionally takes [`RunContext`][pydantic_ai.tools.RunContext] as its only argument.
        Can decorate a sync or async functions.

        Overloads for every possible signature of `system_prompt` are included so the decorator doesn't obscure
        the type of the function, see `tests/typed_agent.py` for tests.

        Example:
        ```python
        from pydantic_ai import Agent, RunContext

        agent = Agent('test', deps_type=str)

        @agent.system_prompt
        def simple_system_prompt() -> str:
            return 'foobar'

        @agent.system_prompt
        async def async_system_prompt(ctx: RunContext[str]) -> str:
            return f'{ctx.deps} is the best'

        result = agent.run_sync('foobar', deps='spam')
        print(result.data)
        #> success (no tool calls)
        ```
        """
        self._system_prompt_functions.append(_system_prompt.SystemPromptRunner(func))
        return func

    @overload
    def result_validator(
        self, func: Callable[[RunContext[AgentDeps], ResultData], ResultData], /
    ) -> Callable[[RunContext[AgentDeps], ResultData], ResultData]: ...

    @overload
    def result_validator(
        self, func: Callable[[RunContext[AgentDeps], ResultData], Awaitable[ResultData]], /
    ) -> Callable[[RunContext[AgentDeps], ResultData], Awaitable[ResultData]]: ...

    @overload
    def result_validator(self, func: Callable[[ResultData], ResultData], /) -> Callable[[ResultData], ResultData]: ...

    @overload
    def result_validator(
        self, func: Callable[[ResultData], Awaitable[ResultData]], /
    ) -> Callable[[ResultData], Awaitable[ResultData]]: ...

    def result_validator(
        self, func: _result.ResultValidatorFunc[AgentDeps, ResultData], /
    ) -> _result.ResultValidatorFunc[AgentDeps, ResultData]:
        """Decorator to register a result validator function.

        Optionally takes [`RunContext`][pydantic_ai.tools.RunContext] as its first argument.
        Can decorate a sync or async functions.

        Overloads for every possible signature of `result_validator` are included so the decorator doesn't obscure
        the type of the function, see `tests/typed_agent.py` for tests.

        Example:
        ```python
        from pydantic_ai import Agent, ModelRetry, RunContext

        agent = Agent('test', deps_type=str)

        @agent.result_validator
        def result_validator_simple(data: str) -> str:
            if 'wrong' in data:
                raise ModelRetry('wrong response')
            return data

        @agent.result_validator
        async def result_validator_deps(ctx: RunContext[str], data: str) -> str:
            if ctx.deps in data:
                raise ModelRetry('wrong response')
            return data

        result = agent.run_sync('foobar', deps='spam')
        print(result.data)
        #> success (no tool calls)
        ```
        """
        self._result_validators.append(_result.ResultValidator(func))
        return func

    @overload
    def tool(self, func: ToolFuncContext[AgentDeps, ToolParams], /) -> ToolFuncContext[AgentDeps, ToolParams]: ...

    @overload
    def tool(
        self,
        /,
        *,
        retries: int | None = None,
        prepare: ToolPrepareFunc[AgentDeps] | None = None,
    ) -> Callable[[ToolFuncContext[AgentDeps, ToolParams]], ToolFuncContext[AgentDeps, ToolParams]]: ...

    def tool(
        self,
        func: ToolFuncContext[AgentDeps, ToolParams] | None = None,
        /,
        *,
        retries: int | None = None,
        prepare: ToolPrepareFunc[AgentDeps] | None = None,
    ) -> Any:
        """Decorator to register a tool function which takes [`RunContext`][pydantic_ai.tools.RunContext] as its first argument.

        Can decorate a sync or async functions.

        The docstring is inspected to extract both the tool description and description of each parameter,
        [learn more](../tools.md#function-tools-and-schema).

        We can't add overloads for every possible signature of tool, since the return type is a recursive union
        so the signature of functions decorated with `@agent.tool` is obscured.

        Example:
        ```python
        from pydantic_ai import Agent, RunContext

        agent = Agent('test', deps_type=int)

        @agent.tool
        def foobar(ctx: RunContext[int], x: int) -> int:
            return ctx.deps + x

        @agent.tool(retries=2)
        async def spam(ctx: RunContext[str], y: float) -> float:
            return ctx.deps + y

        result = agent.run_sync('foobar', deps=1)
        print(result.data)
        #> {"foobar":1,"spam":1.0}
        ```

        Args:
            func: The tool function to register.
            retries: The number of retries to allow for this tool, defaults to the agent's default retries,
                which defaults to 1.
            prepare: custom method to prepare the tool definition for each step, return `None` to omit this
                tool from a given step. This is useful if you want to customise a tool at call time,
                or omit it completely from a step. See [`ToolPrepareFunc`][pydantic_ai.tools.ToolPrepareFunc].
        """
        if func is None:

            def tool_decorator(
                func_: ToolFuncContext[AgentDeps, ToolParams],
            ) -> ToolFuncContext[AgentDeps, ToolParams]:
                # noinspection PyTypeChecker
                self._register_function(func_, True, retries, prepare)
                return func_

            return tool_decorator
        else:
            # noinspection PyTypeChecker
            self._register_function(func, True, retries, prepare)
            return func

    @overload
    def tool_plain(self, func: ToolFuncPlain[ToolParams], /) -> ToolFuncPlain[ToolParams]: ...

    @overload
    def tool_plain(
        self,
        /,
        *,
        retries: int | None = None,
        prepare: ToolPrepareFunc[AgentDeps] | None = None,
    ) -> Callable[[ToolFuncPlain[ToolParams]], ToolFuncPlain[ToolParams]]: ...

    def tool_plain(
        self,
        func: ToolFuncPlain[ToolParams] | None = None,
        /,
        *,
        retries: int | None = None,
        prepare: ToolPrepareFunc[AgentDeps] | None = None,
    ) -> Any:
        """Decorator to register a tool function which DOES NOT take `RunContext` as an argument.

        Can decorate a sync or async functions.

        The docstring is inspected to extract both the tool description and description of each parameter,
        [learn more](../tools.md#function-tools-and-schema).

        We can't add overloads for every possible signature of tool, since the return type is a recursive union
        so the signature of functions decorated with `@agent.tool` is obscured.

        Example:
        ```python
        from pydantic_ai import Agent, RunContext

        agent = Agent('test')

        @agent.tool
        def foobar(ctx: RunContext[int]) -> int:
            return 123

        @agent.tool(retries=2)
        async def spam(ctx: RunContext[str]) -> float:
            return 3.14

        result = agent.run_sync('foobar', deps=1)
        print(result.data)
        #> {"foobar":123,"spam":3.14}
        ```

        Args:
            func: The tool function to register.
            retries: The number of retries to allow for this tool, defaults to the agent's default retries,
                which defaults to 1.
            prepare: custom method to prepare the tool definition for each step, return `None` to omit this
                tool from a given step. This is useful if you want to customise a tool at call time,
                or omit it completely from a step. See [`ToolPrepareFunc`][pydantic_ai.tools.ToolPrepareFunc].
        """
        if func is None:

            def tool_decorator(func_: ToolFuncPlain[ToolParams]) -> ToolFuncPlain[ToolParams]:
                # noinspection PyTypeChecker
                self._register_function(func_, False, retries, prepare)
                return func_

            return tool_decorator
        else:
            self._register_function(func, False, retries, prepare)
            return func

    def _register_function(
        self,
        func: ToolFuncEither[AgentDeps, ToolParams],
        takes_ctx: bool,
        retries: int | None,
        prepare: ToolPrepareFunc[AgentDeps] | None,
    ) -> None:
        """Private utility to register a function as a tool."""
        retries_ = retries if retries is not None else self._default_retries
        tool = Tool(func, takes_ctx=takes_ctx, max_retries=retries_, prepare=prepare)
        self._register_tool(tool)

    def _register_tool(self, tool: Tool[AgentDeps]) -> None:
        """Private utility to register a tool instance."""
        if tool.max_retries is None:
            # noinspection PyTypeChecker
            tool = dataclasses.replace(tool, max_retries=self._default_retries)

        if tool.name in self._function_tools:
            raise exceptions.UserError(f'Tool name conflicts with existing tool: {tool.name!r}')

        if self._result_schema and tool.name in self._result_schema.tools:
            raise exceptions.UserError(f'Tool name conflicts with result schema name: {tool.name!r}')

        self._function_tools[tool.name] = tool

    async def _get_model(self, model: models.Model | models.KnownModelName | None) -> tuple[models.Model, str]:
        """Create a model configured for this agent.

        Args:
            model: model to use for this run, required if `model` was not set when creating the agent.

        Returns:
            a tuple of `(model used, how the model was selected)`
        """
        model_: models.Model
        if some_model := self._override_model:
            # we don't want `override()` to cover up errors from the model not being defined, hence this check
            if model is None and self.model is None:
                raise exceptions.UserError(
                    '`model` must be set either when creating the agent or when calling it. '
                    '(Even when `override(model=...)` is customizing the model that will actually be called)'
                )
            model_ = some_model.value
            mode_selection = 'override-model'
        elif model is not None:
            model_ = models.infer_model(model)
            mode_selection = 'custom'
        elif self.model is not None:
            # noinspection PyTypeChecker
            model_ = self.model = models.infer_model(self.model)
            mode_selection = 'from-agent'
        else:
            raise exceptions.UserError('`model` must be set either when creating the agent or when calling it.')

        return model_, mode_selection

    async def _prepare_model(self, model: models.Model, deps: AgentDeps) -> models.AgentModel:
        """Create building tools and create an agent model."""
        function_tools: list[ToolDefinition] = []

        async def add_tool(tool: Tool[AgentDeps]) -> None:
            ctx = RunContext(deps, tool.current_retry, tool.name)
            if tool_def := await tool.prepare_tool_def(ctx):
                function_tools.append(tool_def)

        await asyncio.gather(*map(add_tool, self._function_tools.values()))

        return await model.agent_model(
            function_tools=function_tools,
            allow_text_result=self._allow_text_result,
            result_tools=self._result_schema.tool_defs() if self._result_schema is not None else [],
        )

    async def _prepare_messages(
        self, deps: AgentDeps, user_prompt: str, message_history: list[_messages.Message] | None
    ) -> tuple[int, list[_messages.Message]]:
        # if message history includes system prompts, we don't want to regenerate them
        if message_history and any(m.role == 'system' for m in message_history):
            # shallow copy messages
            messages = message_history.copy()
        else:
            messages = await self._init_messages(deps)
            if message_history:
                messages += message_history

        new_message_index = len(messages)
        messages.append(_messages.UserPrompt(user_prompt))
        return new_message_index, messages

    async def _handle_model_response(
        self, model_response: _messages.ModelAnyResponse, deps: AgentDeps
    ) -> tuple[_MarkFinalResult[ResultData] | None, list[_messages.Message]]:
        """Process a non-streamed response from the model.

        Returns:
            A tuple of `(final_result, messages)`. If `final_result` is not `None`, the conversation should end.
        """
        # Route to appropriate handler based on response type
        if model_response.role == 'model-text-response':
            return await self._handle_text_response(model_response, deps)
        elif model_response.role == 'model-structured-response':
            return await self._handle_structured_response(model_response, deps)
        else:
            assert_never(model_response)

    async def _handle_text_response(
        self, model_response: _messages.ModelTextResponse, deps: AgentDeps
    ) -> tuple[_MarkFinalResult[ResultData] | None, list[_messages.Message]]:
        """Handle a plain text response from the model for non-streaming responses."""
        if self._allow_text_result:
            result_data_input = cast(ResultData, model_response.content)
            try:
                result_data = await self._validate_result(result_data_input, deps, None)
            except _result.ToolRetryError as e:
                self._incr_result_retry()
                return None, [e.tool_retry]
            else:
                return _MarkFinalResult(result_data), []
        else:
            self._incr_result_retry()
            response = _messages.RetryPrompt(
                content='Plain text responses are not permitted, please call one of the functions instead.',
            )
            return None, [response]

    async def _handle_structured_response(
        self, model_response: _messages.ModelStructuredResponse, deps: AgentDeps
    ) -> tuple[_MarkFinalResult[ResultData] | None, list[_messages.Message]]:
        """Handle a structured response containing tool calls from the model for non-streaming responses."""
        if not model_response.calls:
            raise exceptions.UnexpectedModelBehavior('Received empty tool call message')

        # First process any final result tool calls
        final_result, final_messages = await self._process_final_tool_calls(model_response, deps)

        # Then process regular tools based on end strategy
        if self.end_strategy == 'early' and final_result:
            tool_messages = self._mark_skipped_function_tools(model_response)
        else:
            tool_messages = await self._process_function_tools(model_response, deps)

        return final_result, [*final_messages, *tool_messages]

    async def _process_final_tool_calls(
        self,
        model_response: _messages.ModelStructuredResponse,
        deps: AgentDeps,
    ) -> tuple[_MarkFinalResult[ResultData] | None, list[_messages.Message]]:
        """Process any final result tool calls and return the first valid result."""
        if not self._result_schema:
            return None, []

        messages: list[_messages.Message] = []
        final_result = None

        for call in model_response.calls:
            result_tool = self._result_schema.tools.get(call.tool_name)
            if not result_tool:
                continue

            if final_result is None:
                # This is the first result tool - try to use it
                try:
                    result_data = result_tool.validate(call)
                    result_data = await self._validate_result(result_data, deps, call)
                except _result.ToolRetryError as e:
                    self._incr_result_retry()
                    messages.append(e.tool_retry)
                else:
                    final_result = _MarkFinalResult(result_data)
                    messages.append(
                        _messages.ToolReturn(
                            tool_name=call.tool_name,
                            content='Final result processed.',
                            tool_call_id=call.tool_call_id,
                        )
                    )
            else:
                # We already have a final result - mark this one as unused
                messages.append(
                    _messages.ToolReturn(
                        tool_name=call.tool_name,
                        content='Result tool not used - a final result was already processed.',
                        tool_call_id=call.tool_call_id,
                    )
                )

        return final_result, messages

    async def _process_function_tools(
        self,
        model_response: _messages.ModelStructuredResponse,
        deps: AgentDeps,
    ) -> list[_messages.Message]:
        """Process function (non-final) tool calls in parallel."""
        messages: list[_messages.Message] = []
        tasks: list[asyncio.Task[_messages.Message]] = []

        for call in model_response.calls:
            if tool := self._function_tools.get(call.tool_name):
                tasks.append(asyncio.create_task(tool.run(deps, call), name=call.tool_name))
            elif self._result_schema is None or call.tool_name not in self._result_schema.tools:
                messages.append(self._unknown_tool(call.tool_name))

        # Run all tool tasks in parallel
        if tasks:
            with _logfire.span('running {tools=}', tools=[t.get_name() for t in tasks]):
                task_results: Sequence[_messages.Message] = await asyncio.gather(*tasks)
                messages.extend(task_results)

        return messages

    def _mark_skipped_function_tools(
        self,
        model_response: _messages.ModelStructuredResponse,
    ) -> list[_messages.Message]:
        """Mark function tools as skipped when a final result was found with 'early' end strategy."""
        messages: list[_messages.Message] = []

        for call in model_response.calls:
            if call.tool_name in self._function_tools:
                messages.append(
                    _messages.ToolReturn(
                        tool_name=call.tool_name,
                        content='Tool not executed - a final result was already processed.',
                        tool_call_id=call.tool_call_id,
                    )
                )
            elif self._result_schema is None or call.tool_name not in self._result_schema.tools:
                messages.append(self._unknown_tool(call.tool_name))

        return messages

    async def _handle_streamed_model_response(
        self, model_response: models.EitherStreamedResponse, deps: AgentDeps
    ) -> tuple[_MarkFinalResult[models.EitherStreamedResponse] | None, list[_messages.Message]]:
        """Process a streamed response from the model.

        Returns:
            A tuple of (final_result, messages). If final_result is not None, the conversation should end.
        """
        if isinstance(model_response, models.StreamTextResponse):
            # plain string response
            if self._allow_text_result:
                return _MarkFinalResult(model_response), []
            else:
                self._incr_result_retry()
                response = _messages.RetryPrompt(
                    content='Plain text responses are not permitted, please call one of the functions instead.',
                )
                # stream the response, so cost is correct
                async for _ in model_response:
                    pass

                return None, [response]
        else:
            assert isinstance(model_response, models.StreamStructuredResponse), f'Unexpected response: {model_response}'
            if self._result_schema is not None:
                # if there's a result schema, iterate over the stream until we find at least one tool
                # NOTE: this means we ignore any other tools called here
                structured_msg = model_response.get()
                while not structured_msg.calls:
                    try:
                        await model_response.__anext__()
                    except StopAsyncIteration:
                        break
                    structured_msg = model_response.get()

                if match := self._result_schema.find_tool(structured_msg):
                    call, _ = match
                    tool_return = _messages.ToolReturn(
                        tool_name=call.tool_name,
                        content='Final result processed.',
                        tool_call_id=call.tool_call_id,
                    )
                    return _MarkFinalResult(model_response), [tool_return]

            # the model is calling a tool function, consume the response to get the next message
            async for _ in model_response:
                pass
            structured_msg = model_response.get()
            if not structured_msg.calls:
                raise exceptions.UnexpectedModelBehavior('Received empty tool call message')
            messages: list[_messages.Message] = [structured_msg]

            # we now run all tool functions in parallel
            tasks: list[asyncio.Task[_messages.Message]] = []
            for call in structured_msg.calls:
                if tool := self._function_tools.get(call.tool_name):
                    tasks.append(asyncio.create_task(tool.run(deps, call), name=call.tool_name))
                else:
                    messages.append(self._unknown_tool(call.tool_name))

            with _logfire.span('running {tools=}', tools=[t.get_name() for t in tasks]):
                task_results: Sequence[_messages.Message] = await asyncio.gather(*tasks)
                messages.extend(task_results)
            return None, messages

    async def _validate_result(
        self, result_data: ResultData, deps: AgentDeps, tool_call: _messages.ToolCall | None
    ) -> ResultData:
        for validator in self._result_validators:
            result_data = await validator.validate(result_data, deps, self._current_result_retry, tool_call)
        return result_data

    def _incr_result_retry(self) -> None:
        self._current_result_retry += 1
        if self._current_result_retry > self._max_result_retries:
            raise exceptions.UnexpectedModelBehavior(
                f'Exceeded maximum retries ({self._max_result_retries}) for result validation'
            )

    async def _init_messages(self, deps: AgentDeps) -> list[_messages.Message]:
        """Build the initial messages for the conversation."""
        messages: list[_messages.Message] = [_messages.SystemPrompt(p) for p in self._system_prompts]
        for sys_prompt_runner in self._system_prompt_functions:
            prompt = await sys_prompt_runner.run(deps)
            messages.append(_messages.SystemPrompt(prompt))
        return messages

    def _unknown_tool(self, tool_name: str) -> _messages.RetryPrompt:
        self._incr_result_retry()
        names = list(self._function_tools.keys())
        if self._result_schema:
            names.extend(self._result_schema.tool_names())
        if names:
            msg = f'Available tools: {", ".join(names)}'
        else:
            msg = 'No tools available.'
        return _messages.RetryPrompt(content=f'Unknown tool name: {tool_name!r}. {msg}')

    def _get_deps(self, deps: AgentDeps) -> AgentDeps:
        """Get deps for a run.

        If we've overridden deps via `_override_deps`, use that, otherwise use the deps passed to the call.

        We could do runtime type checking of deps against `self._deps_type`, but that's a slippery slope.
        """
        if some_deps := self._override_deps:
            return some_deps.value
        else:
            return deps

    def _infer_name(self, function_frame: FrameType | None) -> None:
        """Infer the agent name from the call frame.

        Usage should be `self._infer_name(inspect.currentframe())`.
        """
        assert self.name is None, 'Name already set'
        if function_frame is not None:  # pragma: no branch
            if parent_frame := function_frame.f_back:  # pragma: no branch
                for name, item in parent_frame.f_locals.items():
                    if item is self:
                        self.name = name
                        return
                if parent_frame.f_locals != parent_frame.f_globals:
                    # if we couldn't find the agent in locals and globals are a different dict, try globals
                    for name, item in parent_frame.f_globals.items():
                        if item is self:
                            self.name = name
                            return

__init__

__init__(
    model: Model | KnownModelName | None = None,
    *,
    result_type: type[ResultData] = str,
    system_prompt: str | Sequence[str] = (),
    deps_type: type[AgentDeps] = NoneType,
    name: str | None = None,
    retries: int = 1,
    result_tool_name: str = "final_result",
    result_tool_description: str | None = None,
    result_retries: int | None = None,
    tools: Sequence[
        Tool[AgentDeps] | ToolFuncEither[AgentDeps, ...]
    ] = (),
    defer_model_check: bool = False,
    end_strategy: EndStrategy = "early"
)

Create an agent.

Parameters:

Name Type Description Default
model Model | KnownModelName | None

The default model to use for this agent, if not provide, you must provide the model when calling it.

None
result_type type[ResultData]

The type of the result data, used to validate the result data, defaults to str.

str
system_prompt str | Sequence[str]

Static system prompts to use for this agent, you can also register system prompts via a function with system_prompt.

()
deps_type type[AgentDeps]

The type used for dependency injection, this parameter exists solely to allow you to fully parameterize the agent, and therefore get the best out of static type checking. If you're not using deps, but want type checking to pass, you can set deps=None to satisfy Pyright or add a type hint : Agent[None, <return type>].

NoneType
name str | None

The name of the agent, used for logging. If None, we try to infer the agent name from the call frame when the agent is first run.

None
retries int

The default number of retries to allow before raising an error.

1
result_tool_name str

The name of the tool to use for the final result.

'final_result'
result_tool_description str | None

The description of the final result tool.

None
result_retries int | None

The maximum number of retries to allow for result validation, defaults to retries.

None
tools Sequence[Tool[AgentDeps] | ToolFuncEither[AgentDeps, ...]]

Tools to register with the agent, you can also register tools via the decorators @agent.tool and @agent.tool_plain.

()
defer_model_check bool

by default, if you provide a named model, it's evaluated to create a Model instance immediately, which checks for the necessary environment variables. Set this to false to defer the evaluation until the first run. Useful if you want to override the model for testing.

False
end_strategy EndStrategy

Strategy for handling tool calls that are requested alongside a final result. See EndStrategy for more information.

'early'
Source code in pydantic_ai_slim/pydantic_ai/agent.py
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
def __init__(
    self,
    model: models.Model | models.KnownModelName | None = None,
    *,
    result_type: type[ResultData] = str,
    system_prompt: str | Sequence[str] = (),
    deps_type: type[AgentDeps] = NoneType,
    name: str | None = None,
    retries: int = 1,
    result_tool_name: str = 'final_result',
    result_tool_description: str | None = None,
    result_retries: int | None = None,
    tools: Sequence[Tool[AgentDeps] | ToolFuncEither[AgentDeps, ...]] = (),
    defer_model_check: bool = False,
    end_strategy: EndStrategy = 'early',
):
    """Create an agent.

    Args:
        model: The default model to use for this agent, if not provide,
            you must provide the model when calling it.
        result_type: The type of the result data, used to validate the result data, defaults to `str`.
        system_prompt: Static system prompts to use for this agent, you can also register system
            prompts via a function with [`system_prompt`][pydantic_ai.Agent.system_prompt].
        deps_type: The type used for dependency injection, this parameter exists solely to allow you to fully
            parameterize the agent, and therefore get the best out of static type checking.
            If you're not using deps, but want type checking to pass, you can set `deps=None` to satisfy Pyright
            or add a type hint `: Agent[None, <return type>]`.
        name: The name of the agent, used for logging. If `None`, we try to infer the agent name from the call frame
            when the agent is first run.
        retries: The default number of retries to allow before raising an error.
        result_tool_name: The name of the tool to use for the final result.
        result_tool_description: The description of the final result tool.
        result_retries: The maximum number of retries to allow for result validation, defaults to `retries`.
        tools: Tools to register with the agent, you can also register tools via the decorators
            [`@agent.tool`][pydantic_ai.Agent.tool] and [`@agent.tool_plain`][pydantic_ai.Agent.tool_plain].
        defer_model_check: by default, if you provide a [named][pydantic_ai.models.KnownModelName] model,
            it's evaluated to create a [`Model`][pydantic_ai.models.Model] instance immediately,
            which checks for the necessary environment variables. Set this to `false`
            to defer the evaluation until the first run. Useful if you want to
            [override the model][pydantic_ai.Agent.override] for testing.
        end_strategy: Strategy for handling tool calls that are requested alongside a final result.
            See [`EndStrategy`][pydantic_ai.agent.EndStrategy] for more information.
    """
    if model is None or defer_model_check:
        self.model = model
    else:
        self.model = models.infer_model(model)

    self.end_strategy = end_strategy
    self.name = name
    self._result_schema = _result.ResultSchema[result_type].build(
        result_type, result_tool_name, result_tool_description
    )
    # if the result tool is None, or its schema allows `str`, we allow plain text results
    self._allow_text_result = self._result_schema is None or self._result_schema.allow_text_result

    self._system_prompts = (system_prompt,) if isinstance(system_prompt, str) else tuple(system_prompt)
    self._function_tools = {}
    self._default_retries = retries
    for tool in tools:
        if isinstance(tool, Tool):
            self._register_tool(tool)
        else:
            self._register_tool(Tool(tool))
    self._deps_type = deps_type
    self._system_prompt_functions = []
    self._max_result_retries = result_retries if result_retries is not None else retries
    self._current_result_retry = 0
    self._result_validators = []

name instance-attribute

name: str | None = name

The name of the agent, used for logging.

If None, we try to infer the agent name from the call frame when the agent is first run.

run async

run(
    user_prompt: str,
    *,
    message_history: list[Message] | None = None,
    model: Model | KnownModelName | None = None,
    deps: AgentDeps = None,
    infer_name: bool = True
) -> RunResult[ResultData]

Run the agent with a user prompt in async mode.

Example:

from pydantic_ai import Agent

agent = Agent('openai:gpt-4o')

result_sync = agent.run_sync('What is the capital of Italy?')
print(result_sync.data)
#> Rome

Parameters:

Name Type Description Default
user_prompt str

User input to start/continue the conversation.

required
message_history list[Message] | None

History of the conversation so far.

None
model Model | KnownModelName | None

Optional model to use for this run, required if model was not set when creating the agent.

None
deps AgentDeps

Optional dependencies to use for this run.

None
infer_name bool

Whether to try to infer the agent name from the call frame if it's not set.

True

Returns:

Type Description
RunResult[ResultData]

The result of the run.

Source code in pydantic_ai_slim/pydantic_ai/agent.py
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
async def run(
    self,
    user_prompt: str,
    *,
    message_history: list[_messages.Message] | None = None,
    model: models.Model | models.KnownModelName | None = None,
    deps: AgentDeps = None,
    infer_name: bool = True,
) -> result.RunResult[ResultData]:
    """Run the agent with a user prompt in async mode.

    Example:
    ```python
    from pydantic_ai import Agent

    agent = Agent('openai:gpt-4o')

    result_sync = agent.run_sync('What is the capital of Italy?')
    print(result_sync.data)
    #> Rome
    ```

    Args:
        user_prompt: User input to start/continue the conversation.
        message_history: History of the conversation so far.
        model: Optional model to use for this run, required if `model` was not set when creating the agent.
        deps: Optional dependencies to use for this run.
        infer_name: Whether to try to infer the agent name from the call frame if it's not set.

    Returns:
        The result of the run.
    """
    if infer_name and self.name is None:
        self._infer_name(inspect.currentframe())
    model_used, mode_selection = await self._get_model(model)

    deps = self._get_deps(deps)

    with _logfire.span(
        '{agent_name} run {prompt=}',
        prompt=user_prompt,
        agent=self,
        mode_selection=mode_selection,
        model_name=model_used.name(),
        agent_name=self.name or 'agent',
    ) as run_span:
        new_message_index, messages = await self._prepare_messages(deps, user_prompt, message_history)
        self.last_run_messages = messages

        for tool in self._function_tools.values():
            tool.current_retry = 0

        cost = result.Cost()

        run_step = 0
        while True:
            run_step += 1
            with _logfire.span('preparing model and tools {run_step=}', run_step=run_step):
                agent_model = await self._prepare_model(model_used, deps)

            with _logfire.span('model request', run_step=run_step) as model_req_span:
                model_response, request_cost = await agent_model.request(messages)
                model_req_span.set_attribute('response', model_response)
                model_req_span.set_attribute('cost', request_cost)
                model_req_span.message = f'model request -> {model_response.role}'

            messages.append(model_response)
            cost += request_cost

            with _logfire.span('handle model response', run_step=run_step) as handle_span:
                final_result, response_messages = await self._handle_model_response(model_response, deps)

                # Add all messages to the conversation
                messages.extend(response_messages)

                # Check if we got a final result
                if final_result is not None:
                    result_data = final_result.data
                    run_span.set_attribute('all_messages', messages)
                    run_span.set_attribute('cost', cost)
                    handle_span.set_attribute('result', result_data)
                    handle_span.message = 'handle model response -> final result'
                    return result.RunResult(messages, new_message_index, result_data, cost)
                else:
                    # continue the conversation
                    handle_span.set_attribute('tool_responses', response_messages)
                    response_msgs = ' '.join(r.role for r in response_messages)
                    handle_span.message = f'handle model response -> {response_msgs}'

run_sync

run_sync(
    user_prompt: str,
    *,
    message_history: list[Message] | None = None,
    model: Model | KnownModelName | None = None,
    deps: AgentDeps = None,
    infer_name: bool = True
) -> RunResult[ResultData]

Run the agent with a user prompt synchronously.

This is a convenience method that wraps self.run with loop.run_until_complete().

Example:

from pydantic_ai import Agent

agent = Agent('openai:gpt-4o')

async def main():
    result = await agent.run('What is the capital of France?')
    print(result.data)
    #> Paris

Parameters:

Name Type Description Default
user_prompt str

User input to start/continue the conversation.

required
message_history list[Message] | None

History of the conversation so far.

None
model Model | KnownModelName | None

Optional model to use for this run, required if model was not set when creating the agent.

None
deps AgentDeps

Optional dependencies to use for this run.

None
infer_name bool

Whether to try to infer the agent name from the call frame if it's not set.

True

Returns:

Type Description
RunResult[ResultData]

The result of the run.

Source code in pydantic_ai_slim/pydantic_ai/agent.py
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
def run_sync(
    self,
    user_prompt: str,
    *,
    message_history: list[_messages.Message] | None = None,
    model: models.Model | models.KnownModelName | None = None,
    deps: AgentDeps = None,
    infer_name: bool = True,
) -> result.RunResult[ResultData]:
    """Run the agent with a user prompt synchronously.

    This is a convenience method that wraps `self.run` with `loop.run_until_complete()`.

    Example:
    ```python
    from pydantic_ai import Agent

    agent = Agent('openai:gpt-4o')

    async def main():
        result = await agent.run('What is the capital of France?')
        print(result.data)
        #> Paris
    ```

    Args:
        user_prompt: User input to start/continue the conversation.
        message_history: History of the conversation so far.
        model: Optional model to use for this run, required if `model` was not set when creating the agent.
        deps: Optional dependencies to use for this run.
        infer_name: Whether to try to infer the agent name from the call frame if it's not set.

    Returns:
        The result of the run.
    """
    if infer_name and self.name is None:
        self._infer_name(inspect.currentframe())
    loop = asyncio.get_event_loop()
    return loop.run_until_complete(
        self.run(user_prompt, message_history=message_history, model=model, deps=deps, infer_name=False)
    )

run_stream async

run_stream(
    user_prompt: str,
    *,
    message_history: list[Message] | None = None,
    model: Model | KnownModelName | None = None,
    deps: AgentDeps = None,
    infer_name: bool = True
) -> AsyncIterator[
    StreamedRunResult[AgentDeps, ResultData]
]

Run the agent with a user prompt in async mode, returning a streamed response.

Example:

from pydantic_ai import Agent

agent = Agent('openai:gpt-4o')

async def main():
    async with agent.run_stream('What is the capital of the UK?') as response:
        print(await response.get_data())
        #> London

Parameters:

Name Type Description Default
user_prompt str

User input to start/continue the conversation.

required
message_history list[Message] | None

History of the conversation so far.

None
model Model | KnownModelName | None

Optional model to use for this run, required if model was not set when creating the agent.

None
deps AgentDeps

Optional dependencies to use for this run.

None
infer_name bool

Whether to try to infer the agent name from the call frame if it's not set.

True

Returns:

Type Description
AsyncIterator[StreamedRunResult[AgentDeps, ResultData]]

The result of the run.

Source code in pydantic_ai_slim/pydantic_ai/agent.py
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
@asynccontextmanager
async def run_stream(
    self,
    user_prompt: str,
    *,
    message_history: list[_messages.Message] | None = None,
    model: models.Model | models.KnownModelName | None = None,
    deps: AgentDeps = None,
    infer_name: bool = True,
) -> AsyncIterator[result.StreamedRunResult[AgentDeps, ResultData]]:
    """Run the agent with a user prompt in async mode, returning a streamed response.

    Example:
    ```python
    from pydantic_ai import Agent

    agent = Agent('openai:gpt-4o')

    async def main():
        async with agent.run_stream('What is the capital of the UK?') as response:
            print(await response.get_data())
            #> London
    ```

    Args:
        user_prompt: User input to start/continue the conversation.
        message_history: History of the conversation so far.
        model: Optional model to use for this run, required if `model` was not set when creating the agent.
        deps: Optional dependencies to use for this run.
        infer_name: Whether to try to infer the agent name from the call frame if it's not set.

    Returns:
        The result of the run.
    """
    if infer_name and self.name is None:
        # f_back because `asynccontextmanager` adds one frame
        if frame := inspect.currentframe():  # pragma: no branch
            self._infer_name(frame.f_back)
    model_used, mode_selection = await self._get_model(model)

    deps = self._get_deps(deps)

    with _logfire.span(
        '{agent_name} run stream {prompt=}',
        prompt=user_prompt,
        agent=self,
        mode_selection=mode_selection,
        model_name=model_used.name(),
        agent_name=self.name or 'agent',
    ) as run_span:
        new_message_index, messages = await self._prepare_messages(deps, user_prompt, message_history)
        self.last_run_messages = messages

        for tool in self._function_tools.values():
            tool.current_retry = 0

        cost = result.Cost()

        run_step = 0
        while True:
            run_step += 1

            with _logfire.span('preparing model and tools {run_step=}', run_step=run_step):
                agent_model = await self._prepare_model(model_used, deps)

            with _logfire.span('model request {run_step=}', run_step=run_step) as model_req_span:
                async with agent_model.request_stream(messages) as model_response:
                    model_req_span.set_attribute('response_type', model_response.__class__.__name__)
                    # We want to end the "model request" span here, but we can't exit the context manager
                    # in the traditional way
                    model_req_span.__exit__(None, None, None)

                    with _logfire.span('handle model response') as handle_span:
                        final_result, response_messages = await self._handle_streamed_model_response(
                            model_response, deps
                        )

                        # Add all messages to the conversation
                        messages.extend(response_messages)

                        # Check if we got a final result
                        if final_result is not None:
                            result_stream = final_result.data
                            run_span.set_attribute('all_messages', messages)
                            handle_span.set_attribute('result_type', result_stream.__class__.__name__)
                            handle_span.message = 'handle model response -> final result'
                            yield result.StreamedRunResult(
                                messages,
                                new_message_index,
                                cost,
                                result_stream,
                                self._result_schema,
                                deps,
                                self._result_validators,
                                lambda m: run_span.set_attribute('all_messages', messages),
                            )
                            return
                        else:
                            # continue the conversation
                            handle_span.set_attribute('tool_responses', response_messages)
                            response_msgs = ' '.join(r.role for r in response_messages)
                            handle_span.message = f'handle model response -> {response_msgs}'
                            # the model_response should have been fully streamed by now, we can add it's cost
                            cost += model_response.cost()

model instance-attribute

model: Model | KnownModelName | None

The default model configured for this agent.

override

override(
    *,
    deps: AgentDeps | Unset = UNSET,
    model: Model | KnownModelName | Unset = UNSET
) -> Iterator[None]

Context manager to temporarily override agent dependencies and model.

This is particularly useful when testing. You can find an example of this here.

Parameters:

Name Type Description Default
deps AgentDeps | Unset

The dependencies to use instead of the dependencies passed to the agent run.

UNSET
model Model | KnownModelName | Unset

The model to use instead of the model passed to the agent run.

UNSET
Source code in pydantic_ai_slim/pydantic_ai/agent.py
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
@contextmanager
def override(
    self,
    *,
    deps: AgentDeps | _utils.Unset = _utils.UNSET,
    model: models.Model | models.KnownModelName | _utils.Unset = _utils.UNSET,
) -> Iterator[None]:
    """Context manager to temporarily override agent dependencies and model.

    This is particularly useful when testing.
    You can find an example of this [here](../testing-evals.md#overriding-model-via-pytest-fixtures).

    Args:
        deps: The dependencies to use instead of the dependencies passed to the agent run.
        model: The model to use instead of the model passed to the agent run.
    """
    if _utils.is_set(deps):
        override_deps_before = self._override_deps
        self._override_deps = _utils.Some(deps)
    else:
        override_deps_before = _utils.UNSET

    # noinspection PyTypeChecker
    if _utils.is_set(model):
        override_model_before = self._override_model
        # noinspection PyTypeChecker
        self._override_model = _utils.Some(models.infer_model(model))  # pyright: ignore[reportArgumentType]
    else:
        override_model_before = _utils.UNSET

    try:
        yield
    finally:
        if _utils.is_set(override_deps_before):
            self._override_deps = override_deps_before
        if _utils.is_set(override_model_before):
            self._override_model = override_model_before

last_run_messages class-attribute instance-attribute

last_run_messages: list[Message] | None = None

The messages from the last run, useful when a run raised an exception.

Note: these are not used by the agent, e.g. in future runs, they are just stored for developers' convenience.

system_prompt

system_prompt(
    func: Callable[[RunContext[AgentDeps]], str]
) -> Callable[[RunContext[AgentDeps]], str]
system_prompt(func: Callable[[], str]) -> Callable[[], str]
system_prompt(
    func: Callable[[], Awaitable[str]]
) -> Callable[[], Awaitable[str]]

Decorator to register a system prompt function.

Optionally takes RunContext as its only argument. Can decorate a sync or async functions.

Overloads for every possible signature of system_prompt are included so the decorator doesn't obscure the type of the function, see tests/typed_agent.py for tests.

Example:

from pydantic_ai import Agent, RunContext

agent = Agent('test', deps_type=str)

@agent.system_prompt
def simple_system_prompt() -> str:
    return 'foobar'

@agent.system_prompt
async def async_system_prompt(ctx: RunContext[str]) -> str:
    return f'{ctx.deps} is the best'

result = agent.run_sync('foobar', deps='spam')
print(result.data)
#> success (no tool calls)

Source code in pydantic_ai_slim/pydantic_ai/agent.py
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
def system_prompt(
    self, func: _system_prompt.SystemPromptFunc[AgentDeps], /
) -> _system_prompt.SystemPromptFunc[AgentDeps]:
    """Decorator to register a system prompt function.

    Optionally takes [`RunContext`][pydantic_ai.tools.RunContext] as its only argument.
    Can decorate a sync or async functions.

    Overloads for every possible signature of `system_prompt` are included so the decorator doesn't obscure
    the type of the function, see `tests/typed_agent.py` for tests.

    Example:
    ```python
    from pydantic_ai import Agent, RunContext

    agent = Agent('test', deps_type=str)

    @agent.system_prompt
    def simple_system_prompt() -> str:
        return 'foobar'

    @agent.system_prompt
    async def async_system_prompt(ctx: RunContext[str]) -> str:
        return f'{ctx.deps} is the best'

    result = agent.run_sync('foobar', deps='spam')
    print(result.data)
    #> success (no tool calls)
    ```
    """
    self._system_prompt_functions.append(_system_prompt.SystemPromptRunner(func))
    return func

tool

tool(
    func: (
        ToolFuncContext[AgentDeps, ToolParams] | None
    ) = None,
    /,
    *,
    retries: int | None = None,
    prepare: ToolPrepareFunc[AgentDeps] | None = None,
) -> Any

Decorator to register a tool function which takes RunContext as its first argument.

Can decorate a sync or async functions.

The docstring is inspected to extract both the tool description and description of each parameter, learn more.

We can't add overloads for every possible signature of tool, since the return type is a recursive union so the signature of functions decorated with @agent.tool is obscured.

Example:

from pydantic_ai import Agent, RunContext

agent = Agent('test', deps_type=int)

@agent.tool
def foobar(ctx: RunContext[int], x: int) -> int:
    return ctx.deps + x

@agent.tool(retries=2)
async def spam(ctx: RunContext[str], y: float) -> float:
    return ctx.deps + y

result = agent.run_sync('foobar', deps=1)
print(result.data)
#> {"foobar":1,"spam":1.0}

Parameters:

Name Type Description Default
func ToolFuncContext[AgentDeps, ToolParams] | None

The tool function to register.

None
retries int | None

The number of retries to allow for this tool, defaults to the agent's default retries, which defaults to 1.

None
prepare ToolPrepareFunc[AgentDeps] | None

custom method to prepare the tool definition for each step, return None to omit this tool from a given step. This is useful if you want to customise a tool at call time, or omit it completely from a step. See ToolPrepareFunc.

None
Source code in pydantic_ai_slim/pydantic_ai/agent.py
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
def tool(
    self,
    func: ToolFuncContext[AgentDeps, ToolParams] | None = None,
    /,
    *,
    retries: int | None = None,
    prepare: ToolPrepareFunc[AgentDeps] | None = None,
) -> Any:
    """Decorator to register a tool function which takes [`RunContext`][pydantic_ai.tools.RunContext] as its first argument.

    Can decorate a sync or async functions.

    The docstring is inspected to extract both the tool description and description of each parameter,
    [learn more](../tools.md#function-tools-and-schema).

    We can't add overloads for every possible signature of tool, since the return type is a recursive union
    so the signature of functions decorated with `@agent.tool` is obscured.

    Example:
    ```python
    from pydantic_ai import Agent, RunContext

    agent = Agent('test', deps_type=int)

    @agent.tool
    def foobar(ctx: RunContext[int], x: int) -> int:
        return ctx.deps + x

    @agent.tool(retries=2)
    async def spam(ctx: RunContext[str], y: float) -> float:
        return ctx.deps + y

    result = agent.run_sync('foobar', deps=1)
    print(result.data)
    #> {"foobar":1,"spam":1.0}
    ```

    Args:
        func: The tool function to register.
        retries: The number of retries to allow for this tool, defaults to the agent's default retries,
            which defaults to 1.
        prepare: custom method to prepare the tool definition for each step, return `None` to omit this
            tool from a given step. This is useful if you want to customise a tool at call time,
            or omit it completely from a step. See [`ToolPrepareFunc`][pydantic_ai.tools.ToolPrepareFunc].
    """
    if func is None:

        def tool_decorator(
            func_: ToolFuncContext[AgentDeps, ToolParams],
        ) -> ToolFuncContext[AgentDeps, ToolParams]:
            # noinspection PyTypeChecker
            self._register_function(func_, True, retries, prepare)
            return func_

        return tool_decorator
    else:
        # noinspection PyTypeChecker
        self._register_function(func, True, retries, prepare)
        return func

tool_plain

tool_plain(
    *,
    retries: int | None = None,
    prepare: ToolPrepareFunc[AgentDeps] | None = None
) -> Callable[
    [ToolFuncPlain[ToolParams]], ToolFuncPlain[ToolParams]
]
tool_plain(
    func: ToolFuncPlain[ToolParams] | None = None,
    /,
    *,
    retries: int | None = None,
    prepare: ToolPrepareFunc[AgentDeps] | None = None,
) -> Any

Decorator to register a tool function which DOES NOT take RunContext as an argument.

Can decorate a sync or async functions.

The docstring is inspected to extract both the tool description and description of each parameter, learn more.

We can't add overloads for every possible signature of tool, since the return type is a recursive union so the signature of functions decorated with @agent.tool is obscured.

Example:

from pydantic_ai import Agent, RunContext

agent = Agent('test')

@agent.tool
def foobar(ctx: RunContext[int]) -> int:
    return 123

@agent.tool(retries=2)
async def spam(ctx: RunContext[str]) -> float:
    return 3.14

result = agent.run_sync('foobar', deps=1)
print(result.data)
#> {"foobar":123,"spam":3.14}

Parameters:

Name Type Description Default
func ToolFuncPlain[ToolParams] | None

The tool function to register.

None
retries int | None

The number of retries to allow for this tool, defaults to the agent's default retries, which defaults to 1.

None
prepare ToolPrepareFunc[AgentDeps] | None

custom method to prepare the tool definition for each step, return None to omit this tool from a given step. This is useful if you want to customise a tool at call time, or omit it completely from a step. See ToolPrepareFunc.

None
Source code in pydantic_ai_slim/pydantic_ai/agent.py
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
def tool_plain(
    self,
    func: ToolFuncPlain[ToolParams] | None = None,
    /,
    *,
    retries: int | None = None,
    prepare: ToolPrepareFunc[AgentDeps] | None = None,
) -> Any:
    """Decorator to register a tool function which DOES NOT take `RunContext` as an argument.

    Can decorate a sync or async functions.

    The docstring is inspected to extract both the tool description and description of each parameter,
    [learn more](../tools.md#function-tools-and-schema).

    We can't add overloads for every possible signature of tool, since the return type is a recursive union
    so the signature of functions decorated with `@agent.tool` is obscured.

    Example:
    ```python
    from pydantic_ai import Agent, RunContext

    agent = Agent('test')

    @agent.tool
    def foobar(ctx: RunContext[int]) -> int:
        return 123

    @agent.tool(retries=2)
    async def spam(ctx: RunContext[str]) -> float:
        return 3.14

    result = agent.run_sync('foobar', deps=1)
    print(result.data)
    #> {"foobar":123,"spam":3.14}
    ```

    Args:
        func: The tool function to register.
        retries: The number of retries to allow for this tool, defaults to the agent's default retries,
            which defaults to 1.
        prepare: custom method to prepare the tool definition for each step, return `None` to omit this
            tool from a given step. This is useful if you want to customise a tool at call time,
            or omit it completely from a step. See [`ToolPrepareFunc`][pydantic_ai.tools.ToolPrepareFunc].
    """
    if func is None:

        def tool_decorator(func_: ToolFuncPlain[ToolParams]) -> ToolFuncPlain[ToolParams]:
            # noinspection PyTypeChecker
            self._register_function(func_, False, retries, prepare)
            return func_

        return tool_decorator
    else:
        self._register_function(func, False, retries, prepare)
        return func

result_validator

Decorator to register a result validator function.

Optionally takes RunContext as its first argument. Can decorate a sync or async functions.

Overloads for every possible signature of result_validator are included so the decorator doesn't obscure the type of the function, see tests/typed_agent.py for tests.

Example:

from pydantic_ai import Agent, ModelRetry, RunContext

agent = Agent('test', deps_type=str)

@agent.result_validator
def result_validator_simple(data: str) -> str:
    if 'wrong' in data:
        raise ModelRetry('wrong response')
    return data

@agent.result_validator
async def result_validator_deps(ctx: RunContext[str], data: str) -> str:
    if ctx.deps in data:
        raise ModelRetry('wrong response')
    return data

result = agent.run_sync('foobar', deps='spam')
print(result.data)
#> success (no tool calls)

Source code in pydantic_ai_slim/pydantic_ai/agent.py
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
def result_validator(
    self, func: _result.ResultValidatorFunc[AgentDeps, ResultData], /
) -> _result.ResultValidatorFunc[AgentDeps, ResultData]:
    """Decorator to register a result validator function.

    Optionally takes [`RunContext`][pydantic_ai.tools.RunContext] as its first argument.
    Can decorate a sync or async functions.

    Overloads for every possible signature of `result_validator` are included so the decorator doesn't obscure
    the type of the function, see `tests/typed_agent.py` for tests.

    Example:
    ```python
    from pydantic_ai import Agent, ModelRetry, RunContext

    agent = Agent('test', deps_type=str)

    @agent.result_validator
    def result_validator_simple(data: str) -> str:
        if 'wrong' in data:
            raise ModelRetry('wrong response')
        return data

    @agent.result_validator
    async def result_validator_deps(ctx: RunContext[str], data: str) -> str:
        if ctx.deps in data:
            raise ModelRetry('wrong response')
        return data

    result = agent.run_sync('foobar', deps='spam')
    print(result.data)
    #> success (no tool calls)
    ```
    """
    self._result_validators.append(_result.ResultValidator(func))
    return func

pydantic_ai.agent.EndStrategy module-attribute

EndStrategy = Literal['early', 'exhaustive']

The strategy for handling multiple tool calls when a final result is found.

  • 'early': Stop processing other tool calls once a final result is found
  • 'exhaustive': Process all tool calls even after finding a final result